21121

eeeeeeeeeeeeeeeeeeeeee888488

viernes, 2 de julio de 2010

Agua


El agua (del latín aqua) es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. En su uso más común, con agua nos referimos a la sustancia en su estado líquido, pero la misma puede hallarse en su forma sólida llamada hielo, y en forma gaseosa que llamamos vapor. El agua cubre el 71% de la superficie de la corteza terrestre En nuestro planeta, se localiza principalmente en los océanos donde se concentra el 96,5% del agua total, los glaciares y casquetes polares tiene el 1,74%, los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales suponen el 1,72% y el restante 0,04% se reparte en orden decreciente entre lagos, la humedad del suelo, atmósfera, embalses, ríos y seres vivos. Contrario a la creencia popular, el agua es un elemento bastante común en nuestro sistema solar y esto cada vez se confirma con nuevos descubrimientos. Podemos encontrar agua principalmente en forma de hielo; de hecho, es el material base de los cometas, y el vapor compone la cola de ellos.

Desde el punto de vista físico, el agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación, y desplazamiento hacia el mar. Los vientos transportan tanto vapor de agua como el que se vierte en los mares mediante su curso sobre la tierra, en una cantidad aproximada de 45.000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74.000 km³ anuales a causar precipitaciones de 119.000 km³ al año.

Se estima que aproximadamente el 70% del agua dulce se consume en la agricultura. El agua en la industria absorbe una media del 20% del consumo mundial, empleándose como medio en la refrigeración, el transporte y como disolvente de una gran variedad de sustancias químicas. El consumo doméstico absorbe del orden del 10% restante.

El agua potable es esencial para todas las formas de vida, incluida la humana. El acceso al agua potable se ha incrementado sustancialmente durante las últimas décadas en la práctica totalidad de la superficie terrestre. Sin embargo estudios de la FAO, estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes del 2030; en esos países es urgente un menor gasto de agua en la agricultura modernizando los sistemas de riego.



Propiedades físicas y químicas

El agua es una sustancia que químicamente se formula como H2O; es decir, que una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno.

Fue Henry Cavendish quien descubrió en 1781 que el agua es una sustancia compuesta y no un elemento, como se pensaba desde la Antigüedad. Los resultados de dicho descubrimiento fueron desarrollados por Antoine Laurent de Lavoisier dando a conocer que el agua estaba formada por oxígeno e hidrógeno. En 1804, el químico francés Joseph Louis Gay-Lussac y el naturalista y geógrafo alemán Alexander von Humboldt demostraron que el agua estaba formada por dos volúmenes de hidrógeno por cada volumen de oxígeno (H2O).

Las propiedades fisicoquímicas más notables del agua son:

• El agua es insípida e inodora en condiciones normales de presión y temperatura. El color del agua varía según su estado: como líquido, puede parecer incolora en pequeñas cantidades, aunque en el espectrógrafo se prueba que tiene un ligero tono azul verdoso. El hielo también tiende al azul y en estado gaseoso (vapor de agua) es incolora.11

• El agua bloquea sólo ligeramente la radiación solar UV fuerte, permitiendo que las plantas acuáticas absorban su energía.

• Ya que el oxígeno tiene una electronegatividad superior a la del hidrógeno, el agua es una molécula polar. El oxígeno tiene una ligera carga negativa, mientras que los átomos de hidrógenos tienen una carga ligeramente positiva del que resulta un fuerte momento dipolar eléctrico. La interacción entre los diferentes dipolos eléctricos de una molécula causa una atracción en red que explica el elevado índice de tensión superficial del agua.

• La fuerza de interacción de la tensión superficial del agua es la fuerza de van der Waals entre moléculas de agua. La aparente elasticidad causada por la tensión superficial explica la formación de ondas capilares. A presión constante, el índice de tensión superficial del agua disminuye al aumentar su temperatura.12 También tiene un alto valor adhesivo gracias a su naturaleza polar.

• La capilaridad se refiere a la tendencia del agua de moverse por un tubo estrecho en contra de la fuerza de la gravedad. Esta propiedad es aprovechada por todas las plantas vasculares, como los árboles.

• Otra fuerza muy importante que refuerza la unión entre moléculas de agua es el enlace por puente de hidrógeno.13

• El punto de ebullición del agua (y de cualquier otro líquido) está directamente relacionado con la presión atmosférica. Por ejemplo, en la cima del Everest, el agua hierve a unos 68º C, mientras que al nivel del mar este valor sube hasta 100º. Del mismo modo, el agua cercana a fuentes geotérmicas puede alcanzar temperaturas de cientos de grados centígrados y seguir siendo líquida.14 Su temperatura crítica es de 373.85 °C (647,14º K), su valor específico de fusión es de 0,334 kJ/g y su índice específico de vaporización es de 2,23kJ/g.15

• El agua es un disolvente muy potente, al que se ha catalogado como el disolvente universal, y afecta a muchos tipos de sustancias distintas. Las sustancias que se mezclan y se disuelven bien en agua —como las sales, azúcares, ácidos, álcalis, y algunos gases (como el oxígeno o el dióxido de carbono, mediante carbonación)— son llamadas hidrófilas, mientras que las que no combinan bien con el agua —como lípidos y grasas— se denominan sustancias hidrofóbicas. Todos los componentes principales de las células de proteínas, ADN y polisacáridos se disuelven en agua. Puede formar un azeótropo con muchos otros disolventes.

• El agua es miscible con muchos líquidos, como el etanol, y en cualquier proporción, formando un líquido homogéneo. Por otra parte, los aceites son inmiscibles con el agua, y forman capas de variable densidad sobre la superficie del agua. Como cualquier gas, el vapor de agua es miscible completamente con el aire.

• El agua pura tiene una conductividad eléctrica relativamente baja, pero ese valor se incrementa significativamente con la disolución de una pequeña cantidad de material iónico, como el cloruro de sodio.

• El agua tiene el segundo índice más alto de capacidad calorífica específica —sólo por detrás del amoníaco— así como una elevada entalpía de vaporización (40.65 kJ mol-1); ambos factores se deben al enlace de hidrógeno entre moléculas. Estas dos inusuales propiedades son las que hacen que el agua "modere" las temperaturas terrestres, reconduciendo grandes variaciones de energía.

• La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión. A la presión normal (1 atmósfera), el agua líquida tiene una mínima densidad (0,958 kg/l) a los 100 °C. Al bajar la temperatura, aumenta la densidad (por ejemplo, a 90 °C tiene 0,965 kg/l) y ese aumento es constante hasta llegar a los 3,8 °C donde alcanza una densidad de 1 kg/litro. Esa temperatura (3,8 °C) representa un punto de inflexión y es cuando alcanza su máxima densidad (a la presión mencionada). A partir de ese punto, al bajar la temperatura, la densidad comienza a disminuir, aunque muy lentamente (casi nada en la práctica), hasta que a los 0° disminuye hasta 0,9999 kg/litro. Cuando pasa al estado sólido (a 0 °C), ocurre una brusca disminución de la densidad pasando de 0,9999 kg/l a 0,917 kg/l.

• El agua puede descomponerse en partículas de hidrógeno y oxígeno mediante electrólisis.

• Como un óxido de hidrógeno, el agua se forma cuando el hidrógeno —o un compuesto conteniendo hidrógeno— se quema o reacciona con oxígeno —o un compuesto de oxígeno—. El agua no es combustible, puesto que es un producto residual de la combustión del hidrógeno. La energía requerida para separar el agua en sus dos componentes mediante electrólisis es superior a la energía desprendida por la recombinación de hidrógeno y oxígeno. Esto hace que el agua, en contra de lo que sostienen algunos rumores,no sea una fuente de energía eficaz.

• Los elementos que tienen mayor electropositividad que el hidrógeno —como el litio, el sodio, el calcio, el potasio y el cesio— desplazan el hidrógeno del agua, formando hidróxidos. Dada su naturaleza de gas inflamable, el hidrógeno liberado es peligroso y la reacción del agua combinada con los más electropositivos de estos elementos es una violenta explosión.

Actualmente se sigue investigando sobre la naturaleza de este compuesto y sus propiedades, a veces traspasando los límites de la ciencia convencional. En este sentido, el investigador John Emsley, divulgador científico, dijo en cierta ocasión del agua que "(Es) una de las sustancias químicas más investigadas, pero sigue siendo la menos entendida".



El ciclo del agua

Con ciclo del agua —conocido científicamente como el ciclo hidrológico— se denomina al continuo intercambio de agua dentro de la hidrosfera, entre la atmósfera, el agua superficial y subterránea y los organismos vivos. El agua cambia constantemente su posición de una a otra parte del ciclo de agua, implicando básicamente los siguientes procesos físicos:

• evaporación de los océanos y otras masas de agua y transpiración de los seres vivos (animales y plantas) hacia la atmósfera,

• precipitación, originada por la condensación de vapor de agua, y que puede adaptar múltiples formas,

• escorrentía, o movimiento de las aguas superficiales hacia los océanos.

La energía del sol calienta la tierra, generando corrientes de aire que hacen que el agua se evapore, ascienda por el aire y se condense en altas altitudes, para luego caer en forma de lluvia. La mayor parte del vapor de agua que se desprende de los océanos vuelve a los mismos, pero el viento desplaza masas de vapor hacia la tierra firme, en la misma proporción en que el agua se precipita de nuevo desde la tierra hacia los mares (unos 45.000 km³ anuales). Ya en tierra firme, la evaporación de cuerpos acuáticos y la transpiración de seres vivos contribuye a incrementar el total de vapor de agua en otros 74.000 km³ anuales. Las precipitaciones sobre tierra firme —con un valor medio de 119.000 km³ anuales— pueden volver a la superficie en forma de líquido —como lluvia—, sólido —nieve o granizo—, o de gas, formando nieblas o brumas. El agua condensada presente en el aire es también la causa de la formación del arco iris: La refracción de la luz solar en las minúsculas partículas de vapor, que actúan como múltiples y pequeños prismas. El agua de escorrentía suele formar cuencas, y los cursos de agua más pequeños suelen unirse formando ríos. El desplazamiento constante de masas de agua sobre diferentes terrenos geológicos es un factor muy importante en la conformación del relieve. Además, al arrastrar minerales durante su desplazamiento, los ríos cumplen un papel muy importante en el enriquecimiento del suelo. Parte de las aguas de esos ríos se desvían para su aprovechamiento agrícola. Los ríos desembocan en el mar, depositando los sedimentos arrastrados durante su curso, formando deltas. El terreno de estos deltas es muy fértil, gracias a la riqueza de los minerales concentrados por la acción del curso de agua. El agua puede ocupar la tierra firme con consecuencias desastrosas: Las inundaciones se producen cuando una masa de agua rebasa sus márgenes habituales o cuando comunican con una masa mayor —como el mar— de forma irregular. Por otra parte, y aunque la falta de precipitaciones es un obstáculo importante para la vida, es natural que periódicamente algunas regiones sufran sequías. Cuando la sequedad no es transitoria, la vegetación desaparece, al tiempo que se acelera la erosión del terreno. Este proceso se denomina desertización y muchos países adoptan políticas para frenar su avance. En 2007, la ONU declaró el 17 de junio como el Día mundial de lucha contra la desertización y la sequía".

Calidad del agua

El término calidad del agua es relativo, referido a la composición del agua en la medida en que esta es afectada por la concentración de sustancias producidas por procesos naturales y actividades humanas.

Como tal, es un término neutral que no puede ser clasificado como bueno o malo sin hacer referencia al uso para el cual el agua es destinada.

De acuerdo con lo anterior, tanto los criterios como los estándares y objetivos de calidad de agua variarán dependiendo de si se trata de agua para consumo humano (agua potable), para uso agrícola o industrial, para recreación, para mantener la calidad ambiental, etc.

Los límites tolerables de las diversas sustancias contenidas en el agua son normadas por la Organización Mundial de la Salud (O.M.S.), la Organización Panamericana de la Salud (O.P.S.), y por los gobiernos nacionales, pudiendo variar ligeramente de uno a otro. Los valores que se presentan en las tablas de abajo son por lo tanto referenciales.



Porque es parte del cuerpo, necesaria para vivir y para conservar la salud

Después del oxígeno, el agua es el componente natural más importante para el desarrollo y mantenimiento de la vida.

El agua ocupa las tres cuartas partes del mundo y en el cuerpo humano ocupa un importante porcentaje, ya que un hombre adulto sano representa alrededor del 60% de su peso corporal, menos que en el cuerpo de un recién nacido que ocupa el 80%.

La distribución del agua en el cuerpo humano es de aproximadamente 2/3 partes de líquido intracelular, de los cuales un 25% es líquido plasmático y 1/3 es líquido extracelular.

Para mantener un buen estado de salud el volumen de los líquidos del organismo en estos niveles deben permanecer constantes y para ello el cuerpo dispone de varios mecanismos para regular el agua total del cuerpo, como la sed, la hormona antidiurética (ADH) y los riñones.

El agua tiene muchas propiedades fisiológicas en el organismo, lo que hace que este vital líquido sea imprescindible para mantener la vida y la salud integral, entre las principales están:

- Participa en la mayoría de las reacciones químicas del metabolismo: como son los procesos de digestión, respiración, absorción y excreción.

- Ayuda a eliminiar toxinas del cuerpo.

- Es el medio ideal para transportar nutrimentos a todas las partes del cuerpo y recoger las sustancias de desecho de la actividad celular.

- Es un complemento de una dieta sana y equilibrada.

- Contribuye en el mantenimiento de la temperatura corporal del organismo, por medio de la generación de sudor lo mantiene fresco y libre de toxinas.

- Forma parte de los fluidos corporales, como la sangre, la saliva, líquido sinoval, las lágrimas, los mocos, etc.

- Aumenta el volumen del contenido intestinal y ayuda a su eliminación.

- Regula los niveles de acidez del organismo.

- Participa en la reparación y crecimiento celular del organismo.

- Da más vitalidad, elasticidas, suavidad a la piel e hidratación por dentro, lo que hace que uno se vea mucho mejor.

Es un excelente complemento alimenticio para la mujer embarazada, los niños recién nacidos, los enfermos. sobre todo aquella que no contiene calorías y es baja en sales.











La contaminación y la depuración del agua

Los humanos llevamos mucho tiempo depositando nuestros residuos y basuras en la atmósfera, en la tierra y en el agua. Esta forma de actuar hace que los residuos no se traten adecuadamente y causen contaminación. La contaminación del agua afecta a las precipitaciones, a las aguas superficiales, a las subterráneas y como consecuencia degrada los ecosistemas naturales.

El crecimiento de la población y la expansión de sus actividades económicas están presionando negativamente a los ecosistemas de las aguas costeras, los ríos, los lagos, los humedales y los acuíferos. Ejemplos son la construcción a lo largo de la costa de nuevos puertos y zonas urbanas, la alteración de los sistemas fluviales para la navegación y para embalses de almacenamiento de agua, el drenaje de humedales para aumentar la superficie agrícola, la sobreexplotación de los fondos pesqueros, las múltiples fuentes de contaminación provenientes de la agricultura, la industria, el turismo y las aguas residuales de los hogares. Un dato significativo de esta presión es que mientras la población desde 1900 se ha multiplicado por cuatro, la extracción de agua se ha multiplicado por seis. La calidad de las masas naturales de agua se está reduciendo debido al aumento de la contaminación y a los factores mencionados.

La Asamblea General de la ONU estableció en el año 2000 ocho objetivos para el futuro (Objetivos de Desarrollo del Milenio). Entre ellos estaba el que los países se esforzasen en invertir la tendencia de pérdida de recursos medioambientales, pues se reconocía la necesidad de preservar los ecosistemas, esenciales para mantener la biodiversidad y el bienestar humano, pues de ellos depende la obtención de agua potable y alimentos.

Para ello además de políticas de desarrollo sostenible, se precisan sistemas de depuración que mejoren la calidad de los vertidos generados por la actividad humana. La depuración del agua es el conjunto de tratamientos de tipo físico, químico o biológico que mejoran la calidad de las aguas o que eliminan o reducen la contaminación. Hay dos tipos de tratamientos: los que se aplican para obtener agua de calidad apta para el consumo humano y los que reducen la contaminación del agua en los vertidos a la naturaleza después de su uso.





Fuentes y control:

Las principales fuentes de contaminación acuática pueden clasificarse como urbanas, industriales y agrícolas.

La contaminación urbana está formada por las aguas residuales de los hogares y los establecimientos comerciales. Durante muchos años, el principal objetivo de la eliminación de residuos urbanos fue tan sólo reducir su contenido en materias que demandan oxígeno, sólidos en suspensión, compuestos inorgánicos disueltos (en especial compuestos de fósforo y nitrógeno) y bacterias patógenas. En los últimos años, por el contrario, se ha hecho más hincapié en mejorar los medios de eliminación de los residuos sólidos producidos por los procesos de depuración. Los principales métodos de tratamiento de las aguas residuales urbanas tienen tres fases: el tratamiento primario, que incluye la eliminación de arenillas, la filtración, el molido, la floculación (agregación de los sólidos) y la sedimentación; el tratamiento secundario, que implica la oxidación de la materia orgánica disuelta por medio de lodo biológicamente activo, que seguidamente es filtrado; y el tratamiento terciario, en el que se emplean métodos biológicos avanzados para la eliminación del nitrógeno, y métodos físicos y químicos, tales como la filtración granular y la adsorción por carbono activado. La manipulación y eliminación de los residuos sólidos representa entre un 25 y un 50% del capital y los costes operativos de una planta depuradora (véase Depuración de aguas).

Las características de las aguas residuales industriales difieren bastante dependiendo del tipo de actividad que casa industria desarrolle. El impacto de los vertidos industriales depende no sólo de sus características comunes, como la demanda bioquímica de oxígeno, sino también de su contenido en sustancias orgánicas e inorgánicas específicas. Hay tres opciones (que no son mutuamente excluyentes) para controlar los vertidos industriales. El control puede tener lugar allí donde se generan dentro de la planta; las aguas pueden tratarse previamente y descargarse en el sistema de depuración urbana; o pueden depurarse por completo en la planta y ser reutilizadas o vertidas sin más en corrientes o masas de agua.

La agricultura, la ganadería estabulada (vacuno y porcino principalmente) y las granjas avícolas, son la fuente de muchos contaminantes orgánicos e inorgánicos de las aguas superficiales y subterráneas. Estos contaminantes incluyen tanto sedimentos procedentes de la erosión de las tierras de cultivo como compuestos de fósforo y nitrógeno que, en parte, proceden de los residuos animales y los fertilizantes comerciales. Los residuos animales tienen un alto contenido en nitrógeno, fósforo y materia consumidora de oxígeno, y a menudo albergan organismos patógenos. Los residuos de los criaderos industriales se eliminan en tierra por contención, por lo que el principal peligro que representan es el de la filtración y las escorrentías. Las medidas de control pueden incluir el uso de depósitos de sedimentación para líquidos, el tratamiento biológico limitado en lagunas aeróbicas o anaeróbicas, y toda una serie de métodos adicionales.





La eutrofización es el enriquecimiento excesivo en nutrientes de las aguas, lo que produce un gran crecimiento de algas y otras plantas acuáticas, las cuales al morir se depositan en el fondo de los ríos, embalses o lagos, generando residuos orgánicos que, al descomponerse, consumen gran parte del oxígeno disuelto y de esta manera pueden afectar a la vida acuática y producir la muerte por asfixia de la fauna y flora. El crecimiento de algas puede afectar también al uso recreativo de embalses y lagos, a la circulación del agua en ríos y canales y obturar los filtros de estaciones de tratamiento del agua.

Las aguas superficiales reciben cantidades excesivas de nutrientes (nitrógeno y fósforo en forma de NO2 y P2O5), por los vertidos urbanos e industriales y el arrastre de abonos agrícolas. Los aportes de nutrientes son de naturaleza muy diversa. Las aguas residuales domésticas contienen nitrógeno y fósforo procedente, principalmente, de las deyecciones humanas y de los productos de limpieza. La actividad agraria es también una fuente importante, especialmente por los abonos aportados a los cultivos y los residuos originados por la ganadería.

En estudios realizados en una cuenca con agricultura y ganadería muy intensivas de Bretaña, se han observado sobrantes de 228 tm/ha de nitrógeno y de 55 tm/ha de fósforo, debido a un exceso de abonado químico. Estos sobrantes han conducido a multiplicar por 5 a 7 la concentración de nutrientes en el agua durante los últimos veinte años.

Prácticas para evitar la eutrofización de las aguas

• Practicar la agricultura ecológica: Las técnicas de agricultura ecológica basan la fertilización en los aportes de materia orgánica, los abonos verdes y las rotaciones de cultivos. Éstas técnicas favorecen una buena estructura del suelo, que reduce la erosión, y mantienen niveles bajos de nutrientes libres en el suelo, evitando que puedan ser arrastrados hasta los cursos de agua.

Los fertilizantes orgánicos, como el estiércol, aportan toda la gama de nutrientes que necesitan las plantas, mejoran las propiedades físicas del suelo y favorecen la actividad biológica imprescindible para una correcta fertilidad a la vez que presentan mucha más resistencia al lavado o arrastre de los nutrientes, de esta forma permiten obtener buenas cosechas sin contaminar el agua.

• Ajustar los aportes de abonos: El exceso de abonos no conduce a mejores cosechas, es un derroche que le cuesta caro al agricultor y al medio ambiente. Debemos ajustar los aportes de abono a las necesidades del cultivo y las características de la zona.

• Evitar la erosión: La principal causa de que los nutrientes alcancen las aguas superficiales es la erosión y, en nuestras condiciones, la erosión hídrica. Reducirla no sólo significa evitar la eutrofización sino también conservar la fertilidad del suelo. Por ello, es muy importante tomar medidas para reducir los procesos erosivos, especialmente en aquellas parcelas que no están niveladas. Algunas de estas medidas son:

o Labrar el suelo según las curvas de nivel, nunca en la dirección de la pendiente.

o Mantener el suelo cubierto de vegetación, la cual fija el suelo y evita el impacto de la lluvia, mediante cubiertas herbáceas en los cultivos leñosos, abonos verdes en los periodos sin cultivo y realizar barbechos semillados.

o Cuando el suelo no puede tener vegetación cubrirlo con acolchados, por ejemplo de paja.

o Reducir el laboreo y evitar especialmente aquellas labores que dejan el suelo muy disgregado.

• Impedir los vertidos orgánicos: Tanto las granjas como muchas industrias agroalimentarias (almazaras, bodegas, etc) producen residuos líquidos con una elevada carga orgánica (purines, alpechines, etc). Estos residuos tienen una gran capacidad contaminante por lo que se deben depurar antes de su vertido. Igualmente se deben almacenar durante el menor tiempo posible y en instalaciones que garanticen que no se producen fugas o infiltraciones.

La mayoría de estos residuos pueden ser empleados como abonos con un mínimo de tratamientos sencillos y económicos, como el compostaje. De esta forma pasan de ser residuos a ser un importante recurso para la agricultura.



Riesgos químicos:

En principio, estos productos son sustancias poco solubles, fácilmente degradables y se absorben fuertemente por el suelo, lo que limita su afección a los acuíferos. Pero si se da la circunstancia de que alcancen a las aguas subterráneas, los procesos de degradación y retención de los contaminantes se ralentizan notablemente y los efectos pueden ser muy graves.

La presencia de plaguicidas se ha constatado en los acuíferos de todos los países desarrollados. Las técnicas analíticas actuales no permiten detectar algunos fitosanitarios o sus productos de degradación a concentraciones muy bajas, es posible que los estudios realizados sean poco realistas, pues el muestreo representativo de pesticidas es bastante complejo, y los elevados costes de las analíticas han limitado a unas pocas las sustancias rastreadas. En definitiva, no se conoce exactamente la contaminación por fitosanitarios de las aguas subterráneas, pero si se sabe con certeza que estos productos están presentes en los acuíferos de todas las regiones con agricultura intensiva.

También se sabe que los productos más problemáticos son los insecticidas organoclorados y organofosforados y los herbicidas del grupo de las triazinas (atrazina, desmetrina, simazina, terbutrina).

Algunos de los metabolitos, o productos resultantes de la descomposición, de los fitosanitarios son tanto o más tóxicos que la sustancia original. El paraoxon es un metabolito del insecticida paratión que aumenta la inhibición del enzima colinesterasa (sistema nervioso), el diazoxon se produce a partir del insecticida diazinon y tiene los mismos efectos que el paraoxon, diversos metabolitos del herbicida atrazina tienen efectos cancerígenos, el etilen-tio-urea (ETU) formado a partir de EBDC y diversos fungicidas (maneb, mancoceb, zineb) tiene igualmente efecto cancerígeno y el DDE es un disruptor hormonal tan potente o más que el DDT del que procede.2

Medidas para evitar la contaminación por fitosanitarios

• Practicar la agricultura ecológica:

La agricultura ecológica basa el control de las plagas y enfermedades en conseguir un equilibrio en la parcela que impida la proliferación de los patógenos a niveles que causen daños. Se procura la mayor diversidad posible, se potencia la presencia de enemigos naturales de las plagas, se realizan asociaciones y rotaciones de cultivos y se selecciona las variedades más rústicas y adaptadas a la zona.

Cuando es necesario realizar algún tratamiento se emplean productos naturales que resulten inocuos tanto para el medio ambiente como para la salud de las personas y se degradan rápidamente en sustancias que no presentan ningún riesgo.

• Emplear métodos de control biológicos físicos y culturales:

Actualmente existen en el mercado diversos tipos de trampas con las que capturar las plagas, medida que en algunos casos puede ser suficiente. En otros casos el control de una plaga puede realizarse a través de labores culturales como el laboreo, el riego o la poda.

• Mantener los equipos de tratamiento limpios y en buen estado, ser prudentes durante el transporte, llenado y limpieza de los equipos y extremar las precauciones al tratar cerca de ríos y lagos, pues si hace viento este puede arrastrar parte del producto llevándolo hasta los cauces de agua.

Las mareas negras y los vertederos de petróleo

Las mareas negras son recubrimientos erráticos de hidrocarburos en la superficie del océano, producidos por el vertido accidental de petroleo o gasoliferos desde barcos transportadores o instalaciones petroleras, que provocan la contaminación de aguas y playas.

Distintos orígenes de los vertidos de petróleo

Anualmente más de 3 millones y medio de toneladas de petróleo (casi el 0,1% de la producción mundial) contaminan el medio marino. En realidad, solamente alrededor del 50% de este crudo procede de petroleros, a menudo barcos pequeños y anticuados. El resto, proviene de tierra firme. Esta última mitad llega al mar a través de las aguas y vertidos residuales (un 20% de origen urbano, otro 20% industrial y a través de la atmósfera el 10% restante).

Vertidos accidentales aparte, los petroleros arrojan anualmente y de forma deliberada más de un millón de toneladas de crudo en las operaciones de lavado de sus tanques. Tradicionalmente, dicha práctica consistía en bombear agua y arrojarla –mezclada con las impurezas de los tanques- de nuevo al mar, antes de volver a cargar crudo. En la actualidad puede realizarse una limpieza menos agresiva: el lavado a chorro con petróleo crudo a alta presión procedente de la carga del propio barco. Esta nueva técnica puede efectuarse durante el proceso de descarga, a fin de evitar aquella importante fuente de contaminación. Las pérdidas accidentales de petróleo aportan un volumen global de unas 100000 toneladas de dicho material a los océanos a lo largo del año. Por otra parte, los vertidos de petróleo, provocados por accidentes como la explosión en 1979 del Campeche en la costa mexicana, a consecuencia de la cual se vertieron cerca de 400000 toneladas de petróleo, o el anterior (1978) hundimiento del Amoco Cádiz en el canal de la Mancha, así como el accidente ocurrido en 1989, del Exxon Valdez frente a las costas de Alaska, son fenómenos de gran espectacularidad.

No hay comentarios:

Publicar un comentario